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Partial derivatives of the strain energy function t3W/Oll and O W/OI2 are widely evaluated for various 
rubber vlucanizates under small to very large extension. The Mooney-Rivlin plot is reproduced with the 
plot of the original equation, tr = 2 ( 2 -  2 -2) (OW/c~I1 + 2-~cgW/cgI 2 ), in which an inevitability for the 
plot to give a straight line is not found. Even if a straight line is obtained, the constants Ca and C2 differ 
from OW/cgI~ and 0W/c312, respectively. 
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I N T R O D U C T I O N  

In recent rubber engineering and technology, computer 
techniques (particularly finite element analysis) have 
been widely applied to stress analysis and design of 
structures, expanding its boundary from small to 
considerably large deformation. The most important 
point required in such fields, of course, is the accuracy 
of the computation which strictly depends on how 
accurate information can be introduced concerning 
characteristics of materials, the strain energy function of 
the material applicable for a wide range and mode of 
deformation. 

In a phenomenological approach of rubber elasticity 
theories, the well-known Mooney-Rivl in strain energy 
function is the most widely investigated constitutive 
relationship in stress-strain analysis of rubber-like 
materials. The semi-empirical Mooney-Rivl in plot has 
been the subject of many studies because of its simplicity 
and the expectation that it can show the stress-strain 
behaviour of rubber-like materials at medium defor- 
mation. In addition, there have also been many attempts 
to assign a molecular mechanism to the Mooney 
constants, although the Mooney-Rivl in  approach is not 
based on a molecular model. 

In this paper, we first evaluate and characterize the 
strain energy function of various rubber vulcanizates with 
a newly designed apparatus which can perform under 
small to large, and particularly up to very large 
deformation. Subsequently, the Mooney-Rivl in plots for 
simple extension are compared with those derived from 
its original equation theoretically and experimentally. We 
discuss why a straight line does appear on the 
Mooney-Rivl in plot. 

THEORETICAL B A C K G R O U N D  

Considering the continuum theory of finite deformation, 
the stress-strain equation of homogeneous, isotropic and 
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elastic materials such as vulcanized rubber can be derived 
from the strain energy function (more precisely, the strain 
energy density function) W, where W is the elastic energy 
stored in a deformed body. According to Rivlin 1, the 
strain energy function W is given as a function of strain 
invariants 11, 12 and 13: 

where 

W =  W(I 1, h ,  I3) (1) 

11 = 22 + 222 + 22 (2) 

I2=212222+222322+2321 2 2  (3) 

13 ~2~2~2 ---- .~ 1 r,2,,~3 (4) 

and 21, 22 and 23 are the principal extension ratios. In 
general, the third invariant becomes unity (13 = 1) 
because of the incompressibility of rubber. Thus W is 
given as a function of 11 and 12. 

Now, considering a homogeneous biaxial deformation, 
the principal stresses (engineering stresses) 0"1 and 0"2 are 
derived 2 from W: 

= - ~ - -d~2  + 0"1 21 2122 22 -2) (5) 

2 ± ) ( o w  
0 " 2 = ~ 2  t 2--22222,]2011 q- 1012, ] 

(6) 

Then OW/OII and OW/OI 2 can be given by substituting 
the data sets of 0"1, 0"2 and the corresponding 21, 22 into 
the following equations derived from equations (5) and 
(6): 

OW _ 1 { 210" 1 
011 2(22 - 22 ) k,22 -- 2~-~2222 

OW 1 ( 21o" 1 
012 = 2(222 - 2~) ~-22 __- 2~-~2222 

2 0.2 ] 
2 2 _  2~_2222/ (7) 

50.2 ) 
222 - 2 ; 2 2 ~ U  (8) 
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In the case of uniaxial extension, considering 22 = 2~- 1/2 

2(2- 2-2)( °w '°w'l = + 2- (9) 
01x 012J 

The mathematically general form of W for an isotropic 
and incompressible material is given s as: 

eo 

W =  ~C,j(I1 - 3) (lz - 3) (10) 
i , j  

The lowest formula of series (i = 1,j = 0) is functionally 
identical to the classical Gaussian theory of rubber 
elasticity 4 (Ca = Clo) 

W = C 1 ( I  1 - -  3) (11)  

Then, 0W/0I  1 = CI, 0W/012 = 0 and 

OW 
a - - 2 C 1 ( 2 -  2 -2 ) (12) 

02 

Rivlin and Saunders 5 proposed an equation of higher 
order expression through their biaxial testing: 

W =  C1(I1 - 3) + C2(I2 - 3) (13) 

where C1 and C2 are constants, then 0W/011 = C1 and 
0W/012 = C2. For unaxial extension, equation (13) 
gives : 

a = 2(2 - 2 - 2 )  (C 1 + 2 - 1 C 2 )  (14) 

Equation (14) is the Mooney-Rivlin equation and 
identical to equatin (9). Then if C1 and C2 are actually 
constants, as would be expected, C1 and C2 can be 
determined with the so-called Mooney-Rivlin plot 
through uniaxial extension testing, i.e. the plot of 
a/2(2 - 2-  2 ) against 2-1. Ca and C 2 thus obtained were 
regarded to give the general parameters 0W/011 and 
0 W/012, respectively, at medium deformation, although 
such a plot for real rubber vulcanizates deviates from a 
straight line at small and large deformation. It should be 
restated again, however, that this procedure is valid only 
when both parameters C1 and C2 in equation (14), then 
0W/011 and 0W/012 in equation (9), are contants. 
Conversely speaking, even if there appears to be a straight 
line in the plot, it does not necessarily mean that both 
parameters are constants. For example, if 0 W/011 = a/2 
and 0W/012 = b2 and a, b are constants, the plot will 
also give a straight line. It is fundamentally impossible 
to decide two unknown parameters 0 W / O I  1 and 0 W/012 
with equations (9) or (14), or in other words, with simple 
extension testing. As Kawabata et al. 6 showed 
experimentally, ~W/011 and OW/OI2 are complicated 
functions of 11 and 12 then 21 and 22, therefore it is quite 
important to evaluate the Mooney-Rivlin plot tracing 
back to its original equation, equation (9). 

EXPERIMENTS 

Apparatus 
New apparatus was designed to perform strip biaxial 

(pure shear) testing (Figure1). Both edges of the 
rectangular test piece were thicker than the central part 
to avoid fracture or slippage of the clamped edges. The 
test piece can be extended freely to 21 = 6.0 in the 
x-direction, while in the y-direction it is kept constant 
( 2  2 = 1 ) by being gripped in sliding clamps. Thus, the 
data al and ~r 2 measured by paired load cells connected 
to fixed crossheads make calculations of OW/~3II and 

OW/OI 2 from equations (7) and (8) possible. Fioure2 
shows that the lattice printed on the test piece is held in 
the pure shear state even under high extension. 
Experiments were performed at crosshead speeds of 
50 mm min-1 at room temperature (24°C) both in strip 
biaxial and uniaxial extension. The constants C1 and C2 
were given as the intercept at 2-1 = 0 and the slope of 
a straight line in the Mooney-Rivlin plot, respectively. 

Materials 
The materials studied here were natural rubber 

vulcanizates (NR1-NR3),  carbon black reinforced 
natural rubber vulcanizates (NR4-NR7) and other 
vulcanizates of butadiene rubber (BR), styrene butadiene 
rubber (SBR) and nitrile butadiene rubber (NBR). The 
relevant compounding details are given in Table 1. 

Figure 1 The strip biaxial testing machine 

Figure 2 Distorted specimen under strip biaxial deformation (2 = 3.0) 
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Table 1 Compounding details of the materials (parts by weight) 

Composition NR1 NR2 NR3 NR4 NR5 NR6 NR7 BR SBR NBR 

Rubber 100 ~ ~ ,-- *-- ~ ,-- 100 100 1130 
(NR) (BR) (SBR) (NBR) 

Carbon black 0 0 0 20 25 40 60 0 0 0 
(HAF) (FT) (HAF) (HAF) 

Sulphur 0.7 2.0 5.0 2.0 1.5 2.0 2.0 1.5 1.5 1.5 

In addition, zinc oxide (5.0) and steric acid (2.0) for all rubbers and aromatic oil (9.0) for NR5 only 
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Figure 3 Stress-extention ratio relations under strip biaxial 
conditions 
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RESULTS AND DISCUSSION 

Characteristics of the strain energy function of rubber 
vulcanizates 

The stresses tr I and a2 of NR5 obtained in strip biaxial 
testing are shown in Figure 3 as a function of the principal 
extension ratio 21, where trl, 21 and 0"2, 22(=1 ) 
correspond to the x and y directions, respectively. The 
values of a W/dI1 and d W/dI2 for all materials calculated 
using equations (7) and (8) are plotted against strain 
invariant 11 (=12 in strip biaxial) in Figures4-6. As 
Kawabata et al. 6 indicated, d W/t~I 1 and ~ W / d I  2 a r e  not 
contant but have typical features varying with strain 
invariant 11. Virtually all of the rubber vulcanizates, 
filled and unfilled, have similar features. That is, d W/dI1 
decreases rapidly with increasing 11 and has a minimum 
value in a region of small invariant 11 = 3-6, following 
which ~W/dI 1 increases again with increasing 11. In 
contrast, d W/dI2 increases rapidly at first, then decreases 
gradually after passing the maximum with increasing I1. 

Figure4 shows the ~W/dl l - I  1 and the aW/dI2-I 1 
curves of various gum vulcanizates, which only give 
results measured at small invariant 11 because of their 
poor tensile properties under biaxial deformation. 
Figure 5 shows how dW/dI 1 and dW/dI 2 vary with the 
amount of vulcanizing agent, sulphur, in unfilled NR. 
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Figure 5 As in Figure 4 : ( O ) NR1 ; ( ® ) NR2; ((~) NR3 

The term dW/dI1 increases in absolute value and in its 
positive slope and aW/dI2 also increases slightly with 
increasing sulphur content. It is clearly seen that d W/~I1 
of gum vulcanizates with a normal amount of vulcanizing 
agent is nearly constant at medium deformation, the ratio 
of BW/OI2 to BW/BI1 being 1/5-1/10. 

In filled NR vulcanizates, however, dW/dI t is not 
constant. Figure 6 shows that the value increases greatly 
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Figure 6 As in Figure 4 : ( O ) NR4 ; ((]t) NR6;  ( • ) NR7 

0.5 

comparing it with equation (9) using the empirical data 
of dW/OI1 and OW/OI2 obtained for real rubber 
vulcanizates. Here, we set up the reduced stress 
tr* = a / 2 ( 2 -  2-2). Figures 7 and 8 are the Mooney- 
Rivlin relation plotted with data obtained in uniaxial 
extension for unfilled and filled NR, respectively. 
Something similar to straight lines with positive slope 
are seen in Figure 7, and can also be detected in Figure 8. 
From a different point of view, however, these figures 
can be regarded as U- or V-shaped curves, that is we can 
draw tangential lines of any positive or negative slope 
for the curves. Values for C1 and C2 calculated from the 
broken lines in Figures 7 and 8 are given in Table 2. 
Comparing OW/OI1 and OW/OI 2 in Figure 5 with C1 and 
C2 in Table 2 for unfilled NR, C1 is slightly smaller than 
OW/OI1 and C2 is much larger than OW/OI2. In carbon 
black filled NR, particularly as filler content increases, 
both C1 and C2 are different from OW/Olt and OW/OI2, 
respectively. These results indicate that it is nearly 
impossible to estimate OW/OI1 and OW/OI2 from C1 and 
C2 given by the Mooney-Rivlin plot for rubber 
vulcanizates. 

Now we consider why straight lines are shown in 
Figures 7 and 8, despite the fact that both t3W/OI 1 and 
OW/OI2 are a complicated function of 2 and different 
from Ct and C2 in absolute values. As explained before, 
the Mooney-Rivlin equation, equation (14), is identical 
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Mooney - R iv l i n  plots:  ( O )  NR1 ; ( ® )  NR2;  ( G )  NR3 

with increasing carbon black, in particular, the positive 
slope of the curves becomes steeper. OW/OI 2 also 
increases with increasing filler content but is negligible 
compared with O W/c~I1. 

The Mooney-Rivlin plot of rubber vulcanizates 
Why does the Mooney-Rivlin plot give a straight line 

for materials for which dW/OI1 and aW/OI2 are not 
constant but a complicated function of 2? We shall 
evaluate the Mooney-Rivlin equation, equation (14), 
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Figure 8 As in Figure 7 : ( O ) NR4 ; ( ~ ) NR6 ; ( • ) NR7 

Table 2 Mooney-Rivlin constants C t and C 2 

C 1 (MPa) C2 (MPa) 

NR1 0.10 0.11 
NR2 0.18 0.12 
NR3 0.28 0.15 
NR4 0.23 0.25 
NR6 0.017 0.98 
NR7 - 0.20 1.66 

POLYMER, 1992, Volume 33, Number 3 505 



Molecular behaviour of elastomeric materials: Y. Fukahori and W. Seki 

0.8 

Figure 9 

Figure 10 
NR3 

o 
Q.  

,-T 

(D 

0.6 

0.4 

0.2 

l 

I I I I 
0 02 0A 0.6 08 1.0 

c~ W/c~l 1 as a funct ion o f  2 -  a : (C))  N R  1 ; ( ® )  NR2  : (E) ) NR3  

0.1 

o 
0. 
~E 

N 
-0.1 

-0.2 

-0.3 I I I I 
0 0.2 04 0.6 0.8 1.0 

6~W/6312 as a function o f2 -1 :  (C)) NR1; ( ® )  NR2; ( 8 )  

to the general equation (9), which means that the reduced 
stress g* in equation (14) equals aW/t~l 1 + 2-~aW/312 
in equation (9). That is, the Mooney-Rivlin plot can be 
reproduced as a plot of 0W/311 + 2-~0W/012 as a 
function of 2 -1. Figures 9-11 are OW/OII, OW/~I2 and 
c3W/OI~ + 2-1~W/012 plotted against 2 - t  for unfilled 
NR. Figure 11 is fundamentally equal to Figure 7. The 
corresponding plots for filled NR are given in 
Figures 12-14. The agreement between Figures 14 and 8 

is satisfactory. These experimental results show that the 
Mooney-Rivlin plot can be estimated with the plots in 
Figures 11 and 14 independently obtained in strip biaxial 
testing. We can now derive the answer to the earlier 
question by analysing straight lines observed in 
Figures II and 14. Considering the difficulty of finding 
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Figure 13 As in Figure 10: ( O )  NR4;  (@)  NR6;  (@)  NR7 

Figure 14 
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a region where 8W/dI1 and OW/812 are constant 
simultaneously, we can roughly draw the following 
schematic features for OW/OI1, OW/OI2 and dW/dI 1 + 
2- ~ W/OI2, where the 2-1 axis is divided into three parts, 
regions I, II and III. Since c~W/OI 1 has a U shape as a 
function of 2 -1, OW/OI~ can be illustrated as in 
Fioure 15a, i.e. OW/dla decreases rapidly in region I, 
keeps nearly constant in region II and increases 
drastically again with increasing 2 -~. The bottom 

horizontal of the U shape becomes narrow as sulphur or 
filler contents increase, dW/OI2 as a function of 2-1, on 
the other hand, increases linearly in regions I and II and 
decreases drastically with increasing 2 -1 (Figure 15b). 
As a result, dW/aI 1 + 2-ldW/dI2 versus 2-1 curves will 
have the form shown in Figure 15c. In region I, the 
contribution of ~W/812, then 2-18W/~I2 to OW/dI1 + 
2-18W/dI2 is negligibly small, then dW/dI1 + 2  -1 
8W/812,~SW/811. Since we can write dW/dI~ ~kl, 
BW/dI2 ~ 2- lk 2 in region II, then dW/dI1 + 2-X~w/dI2 

kl + 2-2k2, where k I and k2 are constant. That is, 
W/dI1 + 2-18 W/dI2 as a function of 2-1 does not give 

a simple straight line but a curve of secondary degree 
gradually increasing with increasing 2-~ in region II. 
In region III, 8W/8II+2-18W/812 gives entirely 
contingent results as the summation of two drastically 
changing parameters, one positive and the other negative. 
Hence, these results cannot be anticipated. These simple 
but general features tell us that there is no inevitability 
for the plot of the reduced stress against 2-1 to give a 
straight line. Although only a few materials were tested, 
it is better to conclude that we must give a perfectly 
different meaning for the constants Ca and C2 obtained 
through the Mooney-Rivlin plot assuming a straight line 
to be actually observed, from the strain energy functions, 
dW/dI 1 and dW/c3I 2. Usually, a straight line on the 
Mooney-Rivlin plot is drawn passing through the latter 
half of regions II and III, and consequently the slope of 
the line becomes too large, which gives a much higher 
value for C2 compared with dW/dI 2. 

Finally, we show two calculations for NR5 ; one is the 
stress-strain relation for uniaxial extension with the 
strain energy function obtained through strip biaxial 
testing and the other is that for strip biaxial deformation 
with the Mooney-Rivlin constants obtained in uniaxial 
extension for slightly filled NR5. The former has already 
given in reference 7 for the case of uniaxial extension 
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Figure 15 Schematic representation of (a)  OW/OIt, (b)  ~W/OI 2 and 
(c) 0 W/OIl + 2-1~ W/OI2 as a function of 2-1 
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Figure 16 Stress-strain ratio relations in uniaxial extension and 
compression: (O)  experimental data; ( - - )  calculated data with the 
strain-energy function obtained in a strip biaxial test 
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Figure 17 Stress-strain relations in simple shearing; ((3) experimental 
data; ( - - )  calculated data 

and compression (Fi#urel6) and simple shearing 
(Fioure17), the agreement between calculation and 
experiment being excellent. In the latter, calculation is 
performed for strip biaxial deformation using C1 = 0.095 
MPa and C2 = 0.228 MPa (Fioure18). It is clearly 
shown that the calculated results in Fioure 18 differ 
greatly from the experimental results, in particular, giving 
opposite results for the relation of al to a2 under large 
deformation. This discrepancy comes from the general 
tendency that the value of C2 obtained from a straight 
line on the Mooney-Rivlin plot is much larger than 
OW/OI2. 

CONCLUSIONS 

Partial derivatives of the strain energy function, 0 W/d11 
and a W/aI2, of rubber vulcanizates have typical features 
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Figure 18 Stress-extension ratio relations in strip biaxial conditions : 
( - - )  experimental; ( - - - )  calculated with the Mooney-Rivlin 
constants C1 and C2 

varying with strain invariant 11 which are scarcely 
affected by species, being unfilled and filled, t3W/OI 1 
decreases rapidly at first then increases again gradually 
after passing the minimum as 11 increases, t3W/OI2 
behaves conversely to OW/OI1 with increasing 11, the 
ratio of O W / O I  2 to  OW/OIa being 1/5-1/10. 

The Mooney-Rivlin plot is reproduced with the plot 
of the original equation, equation (9), i.e. the plot of 
OW/OI1 + 2-10W/012 against 2 -1. We cannot find any 
inevitability for the plot to give a straight line. Therefore, 
even if a straight line is seen, the constants C1 and 
C2 are different from 8W/dI1 and aw/aI2, respectively. 
In particular, the most significant problem is the 
difference between the values of C2 and 0 W/dI2, C2 being 
much larger than aw/oI2. 
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